Uniqueness theorems in inverse spectral theory for one-dimensional Schrödinger operators
نویسندگان
چکیده
منابع مشابه
Uniqueness Theorems in Inverse Spectral Theory for One-dimensional Schrödinger Operators
New unique characterization results for the potential V (x) in connection with Schrödinger operators on R and on the half-line [0,∞) are proven in terms of appropriate Krein spectral shift functions. Particular results obtained include a generalization of a well-known uniqueness theorem of Borg and Marchenko for Schrödinger operators on the half-line with purely discrete spectra to arbitrary sp...
متن کاملInverse Uniqueness Results for One-dimensional Weighted Dirac Operators
Given a one-dimensional weighted Dirac operator we can define a spectral measure by virtue of singular Weyl–Titchmarsh–Kodaira theory. Using the theory of de Branges spaces we show that the spectral measure uniquely determines the Dirac operator up to a gauge transformation. Our result applies in particular to radial Dirac operators and extends the classical results for Dirac operators with one...
متن کاملInverse Spectral Theory for One-dimensional Schrödinger Operators: the a Function
We link recently developed approaches to the inverse spectral problem (due to Simon and myself, respectively). We obtain a description of the set of Simon’s A functions in terms of a positivity condition. This condition also characterizes the solubility of Simon’s fundamental equation.
متن کاملSymplectic inverse spectral theory for pseudodifferential operators
We prove, under some generic assumptions, that the semiclassical spectrum modulo O(~) of a one dimensional pseudodifferential operator completely determines the symplectic geometry of the underlying classical system. In particular, the spectrum determines the hamiltonian dynamics of the principal symbol.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1996
ISSN: 0002-9947,1088-6850
DOI: 10.1090/s0002-9947-96-01525-5